Jumat, 13 November 2015

Edit

Resume Film Cybergeddon

Resume Film Cybergeddon



Seiring perkembangan zaman, kini teknologi semakin dikembangkan oleh perusahaan-perusahaan yang bergerak di bidang teknologi. Apapun yang dibutuhkan oleh manusia kini dapat diakses dengan mudah dimanapun, kapanpun dan oleh siapapun. Namun Tidak terlepas dari apa yang telah dibuat manusia semua teknologi yang telah diciptakan meiliki kelebihan dan kekurangan. Banyak orang yang memakai teknologi untuk hal yang positif namun tidak sedikit pula orang yang menggunakan teknologi untuk hal negatif atau kejahatan.

Seperti yang diceritakan difilm Cybergeddon tentang kejahatan yang dapat dilakukan di dunia maya. Kejahatan tersebut dapat berupa pembobolan rekening, pencemaran nama baik, kegagalan system komputer, hilangnya atau tercurinya dokumen rahasia, kekacauan yang terjadi di setiap Negara, dan kejahatan ini juga dapat mengakibatkan manusia kembali ke zaman batu tanpa adanya teknologi. Hal tersebut dilakukan oleh para peretas dengan menanamkan virus pada system komputer yang membuat peretas tersebut melakukan kejahatan dengan mudah.

Sering kali manusia ceroboh dalam melakukan segala hal. Padahal sedikit saja kecerobohan yang dilakukan oleh mereka  dapat mengakibatkan orang tersebut terkena masalah yang akan berujung pada malapetaka. Maka dari itu kita sebagai manusia harus lebih berhati-hati di zaman yang serba teknologi karena teknologi dapat membuat orang yang benar menjadi bersalah begitu pula sebaliknya.   


Kamis, 12 November 2015

Edit

Islam, Iman dan Ihsan

File ini berbentuk Powerpoint akan terbuka secara otomatis dengan mengkliknya di sini

Edit

Aqidah Islam dan Sifat-Sifat Allah


File ini berbentuk Powerpoint akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Ilmu Syariat Islam Dalam Arti luas dan Arti Khusus

File ini berbentuk Powerpoint akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Agama, Pengertian Dan Fungsinya

File ini berbentuk Powerpoint akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Menggambar Teknik 6

File ini berbentuk Powerpoint akan terbuka secara otomatis dengan mengkliknya di sini

Rabu, 11 November 2015

Edit

Menggambar Teknik 5

File ini berbentuk Powerpoint akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Menggambar Teknik 4

File ini berbentuk Powerpoint akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Menggambar Teknik 3


File ini berbentuk Powerpoint akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Menggambar Teknik 2


File ini berbentuk Powerpoint akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Menggambar Teknik 1


File ini berbentuk Powerpoint akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Kalkulus


File ini berbentuk Powerpoint akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Prosessor dan Memori

File ini berbentuk Pdf akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Teknologi Penyimpanan Komputer

File ini berbentuk Pdf akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Teknologi Perangkat Lunak Komputer

File ini berbentuk Pdf akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Teknologi Perangkat Keras Komputer

File ini berbentuk Pdf akan terbuka secara otomatis dengan mengkliknya di sini

Kamis, 22 Oktober 2015

Edit

Hukum Radiasi Planck

Hukum Radiasi Planck

             
            Pada tahun 1900, fisikawan Jerman, Max Planck, mengumumkan bahwa dengan membuat suatu modifikasi khusus dalam perhitungan klasik dia dapat menjabarkan fungsi P (λ,T) yang sesuai dengan data percobaan pada seluruh panjang gelombang.

             Hukum radiasi Planck menunjukkan distribusi (penyebaran) energi yang dipancarkan oleh sebuah benda hitam. Hukum ini memperkenalkan gagasan baru dalam ilmu fisika, yaitu bahwa energi merupakan suatu besaran yang dipancarkan oleh sebuah benda dalam bentuk paketpaket kecil terputus-putus, bukan dalam bentuk pancaran molar. Paket-paket kecil ini disebut kuanta dan hukum ini kemudian menjadi dasar teori kuantum.


Distribusi spektrum radiasi benda hitam terhadap panjang gelombang pada T = 1.600 K.
Rumus Planck menyatakan energi per satuan waktu pada frekuensi v per satuan selang frekuensi per satuan sudut tiga dimensi yang dipancarkan pada sebuah kerucut tak terhingga kecilnya dari sebuah elemen permukaan benda hitam, dengan satuan luas dalam proyeksi tegak lurus terhadap sumbu kerucut.

Pernyataan untuk intensitas jenis monokromatik Iv adalah:

Iv = 2hc-2v3/(exp (hv/kT) –1) ....................................... (2)

dengan h merupakan tetapan Planck, c adalah laju cahaya, k adalah tetapan Boltzmann, dan T adalah temperatur termodinamik benda hitam.
Intensitas juga dapat dinyatakan dalam bentuk energi yang dipancarkan pada panjang gelombang λ per satuan selang panjang gelombang. Pernyataan ini dapat dituliskan dalam bentuk:

Rumus Planck dibatasi oleh dua hal penting berikut ini.

1. Untuk frekuensi rendah v << (kT/h), dan panjang gelombang yang panjang λ >> (hc/kT), maka akan berlaku rumus Rayleigh-Jeans.

Iv = 2.c-2.v2.k.T

atau

Iλ = 2.c.λ-4 .k.T

Pada persamaan tersebut tidak mengandung tetapan Planck, dan dapat diturunkan secara klasik dan tidak berlaku untuk frekuensi tinggi, seperti energi tinggi, karena sifat kuantum foton harus pula diperhitungkan. 

2. Pada frekuensi tinggi v >> (kT/h), dan pada panjang gelombang yang pendek λ << (hc/kT), maka akan berlaku rumus Wien:

Iv = 2.h.c-2v3exp (-hv/kT) 

atau

Iλ = 2.h.c2. λ−5 exp (-hv/λkT) 

Max Planck menyatakan dua anggapan mengenai energi radiasi sebuah benda hitam.

1. Pancaran energi radiasi yang dihasilkan oleh getaran molekul-molekul benda dinyatakan oleh:

E = n.h.v ........................................................ (4)

dengan v adalah frekuensi, h adalah sebuah konstanta Planck yang nilainya 6,626 × 10-34 Js, dan n adalah bilangan bulat yang menyatakan bilangan kuantum.
dengan v adalah frekuensi, h adalah sebuah konstanta Planck yang nilainya 6,626 × 10-34 Js, dan n adalah bilangan bulat yang menyatakan bilangan kuantum.

2. Energi radiasi diserap dan dipancarkan oleh molekul-molekul secara diskret yang disebut kuanta atau foton. Energi radiasi ini terkuantisasi, di mana energi untuk satu foton adalah:

E = h.v ........................................................ (5)

dengan h merupakan konstanta perbandingan yang dikenal sebagai konstanta Planck. Nilai h ditentukan oleh Planck dengan menyesuaikan fungsinya dengan data yang diperoleh secara percobaan. Nilai yang diterima untuk konstanta ini adalah:

h = 6,626× 10-34 Js = 4,136× 10-34 eVs.

Planck belum dapat menyesuaikan konstanta h ini ke dalam fisika klasik, hingga Einstein menggunakan gagasan serupa untuk menjelaskan efek fotolistrik.
Berapakah panjang gelombang sebuah radiasi foton yang memiliki energi 3,05 × 10-19 Js? (Diketahui konstanta Planck, h = 6,626 × 10-34 Js dan cepat rambat cahaya, c = 3 × 108 m/s)

Penyelesaian:

Diketahui: 

E = 3,05 × 10-19 Js
h = 6,626 × 10-34 Js
c = 3× 108 m/s

Ditanya: λ = ... ?

Pembahasan :

Materi Fisika :

Konstanta Planck h merupakah tetepan fundamental yang besarnya sama dengan perbandingan antara energi E dari suatu kuantum energi terhadap frekuensinya.
Teori Kuantum Planck
Rumus Minimal
Energi Foton
E = hf
E = h( c/λ )

Energi Foton Sejumlah n
E = nhf
E = nh( c/λ )
Konversi
1 elektron volt = 1 eV = 1,6 x 10−19 joule
1 angstrom = 1 Ã… = 10−10 meter
1 nanometer = 1 nm = 10−9 meter
Daya → Energi tiap sekon
Intensitas → Energi tiap sekon persatuan luas
 Contoh Soal dan Pembahasan
Soal No. 1
Tentukan kuanta energi yang terkandung dalam sinar dengan panjang gelombang 6600 Ã… jika kecepatan cahaya adalah 3 x 108 m/s dan tetapan Planck adalah 6,6 x 10−34 Js !

Pembahasan
E = h(c/λ)
E = (6,6 x 10−34 )( 3 x 108/6600 x 10−10 ) = 3 x 10−19 joule
Soal No. 2
Panjang gelombang cahaya yang dipancarkan oleh lampu monokromatis 100 watt adalah 5,5.10−7 m. Cacah foton (partikel cahaya) per sekon yang dipancarkan sekitar....
A. 2,8 x 1022 /s
B. 2,0 x 1022 /s
C. 2,6 x 1020 /s
D. 2,8 x 1020 /s
E. 2,0 x 1020 /s
(Sumber soal : UM UGM 2004)

Pembahasan
Data :
P = 100 watt → Energi yang dipancarkan tiap sekon adalah 100 joule.

Energi 1 foton
E = h(c/λ)
E = (6,6 x 10−34 )( 3 x 108/5,5 x 10−7 ) joule

Jumlah foton (n)
n = 100 joule : [ (6,6 x 10−34 )( 3 x 108/5,5 x 10−7 ) joule] = 2,8 x 1020 foton.

Soal No. 3
Intensitas radiasi yang diterima pada dinding dari tungku pemanas ruangan adalah 66,3 W.m−2. Jika tungku ruangan dianggap benda hitam dan radiasi gelombang elektromagnetik pada panjang gelombang 600 nm, maka jumlah foton yang mengenai dinding persatuan luas persatuan waktu adalah ....(h = 6,63 x 10− 34 J.s, c = 3 x 108 m.s− 1)
A. 1 x 1019 foton
B. 2 x 1019 foton
C. 2 x 1020 foton
D. 5 x 1020 foton
E. 5 x 1021 foton
(Sumber soal : UN Fisika SMA 2010)

Pembahasan
Data :
I = 66,3 W.m−2 → Energi yang diterima tiap sekon tiap meter persegi adalah 66,3 joule.

Energi 1 foton
E = h(c/λ)
E = (6,63 x 10−34 )( 3 x 108/600 x 10−9 ) joule

Jumlah foton tiap sekon tiap satuan luas adalah:
n = 66,3 joule : [ (6,63 x 10−34 )( 3 x 108/600 x 10−9 ) joule] = 2 x 1020 foton

Soal No. 4
Tentukan perbandingan kuanta energi yang terkandung dalam sinar dengan panjang gelombang 6000 Ã… dan sinar dengan panjang gelombang 4000 Ã… !

Pembahasan
Data :
λ1 = 6000 Å
λ2 = 4000 Å

E = h(c/λ)
E1/E2 = λ2 : λ1 = 4000 : 6000 = 2 : 3

Soal No. 5
Energi foton sinar gamma adalah 108 eV. Jika h = 6,6 x 10−34 Js dan c = 3 x 108 m/s, tentukan panjang gelombang sinar gamma tersebut dalam satuan angstrom!

Pembahasan
Data :
E = 108 eV = 108 x (1,6 x 10−19) joule = 1,6 x 10−11 joule
h = 6,6 x 10−34 Js
c = 3 x 108 m/s
λ = ...?

λ = hc / E
λ = ( 6,6 x 10−34)(3 x 108) / (1,6 x 10−11)
λ = 12,375 x 10−15 meter =12,375 x 10−15 x 1010 Ã… = 12,375 x 10−5 Ã…

Soal No. 6
Bola lampu mempunyai spesifikasi 132 W/220 V, ketika dinyalakan pada sumber tegangan 110 V memancarkan cahaya dengan panjang gelombang 628 nm. Bila lampu meradiasikan secara seragam ke segala arah, maka jumlah foton yang tiba persatuan waktu persatuan luas di tempat yang berjarak 2,5 m dari lampu adalah ... (h =6,6.10−34 J s)
(A) 5,33 . 1018 foton.s m−2
(B) 4,33 . 1018 foton.s m−2
(C) 3,33 . 1018 foton.s m−2
(D) 2,33 . 1018 foton.s m−2
(E) 1,33 . 1018 foton.s m−2
(Sumber soal : SIMAK - UI 2009)

Pembahasan
Daya Lampu yang memiliki spesifikasi 132 W/220 V saat dipasang pada tegangan 110 V dayanya akan turun menjadi :
P2 =(V2/V1)2 x P1
P2 =(110/220)2 x 132 watt = 33 watt

Intensitas (daya persatuan luas) pada jarak 2,5 meter :
I = (P/A) dengan A adalah luas permukaan, anggap berbentuk bola (luas bola empat kali luas lingkaran).
I = (P/4Ï€ r2)
I = (33/4Ï€ (2,5)2) = 0,42 watt/m2
0,42 watt/m2 → Energi tiap sekon persatuan luas adalah 0,42 joule.

Jumlah foton (n) :
n = 0,42 : (hc/λ) = [ 0,42 ] : [ ( 6,6 x 10−34 )( 3 x 108 )/( 628 x 10−9 ) ] = ( 0,42 ) : (3,15 x 10−19 )
n = 1,33 x 1018 foton

Edit

Teori De Broglie

              


                Pada tahun 1924, Louis de Broglie, menjelaskan bahwa cahaya dapat berada dalam suasana tertentu yang terdiri dari partikel-partikel, kemungkinan berbentuk partikel pada suatu waktu sehingga untuk menghitung panjang gelombang satu partikel diperoleh:


Hipotesis de Broglie terbukti benar dengan ditemukannya sifat gelombang dari elektron. Elektron mempunyai sifat difraksi seperti halnya sinar–X. Sebagai akibat dari dualisme sifat elektron sebagai materi dan sebagai gelombang, maka lintasan elektron yang dikemukakan Bohr tidak dapat dibenarkan. Gelombang  tidak bergerak menurut suatu garis, melainkan menyebar pada suatu daerah tertentu.

Partikel yang bergerak memiliki sifat gelombang. Fakta yang mendukung teori ini adalah petir dan kilat. Pernahkan Anda mendengar bunyi petir dan melihat kilat ketika hujan turun? Manakah yang lebih dulu terjadi, kilat atau petir?

Kilat akan lebih dulu terjadi daripada petir. Kilat menunjukan sifat gelombang berbentuk cahaya, sedangkan petir menunjukan sifat pertikel berbentuk suara. Hipotesis de Broglie dibuktikan oleh C. Davidson an LH Giermer (Amerika Serikat) dan GP Thomas (Inggris).
Pada tahun 1924, Louis de Broglie, menjelaskan bahwa cahaya dapat berada dalam suasana tertentu yang terdiri dari partikel-partikel, kemungkinan berbentuk partikel pada suatu waktu, yang memperlihatkan sifat-sifat seperti gelombang (James E Brady, 1990). Argumen de Broglie menghasilkan hal sebagai berikut.



Edit

Gejala Tumbukan Antara Foton dan Elektron

Efek Compton



               Pada efek fotolistrik, cahaya dapat dipandang sebagai kuantum energi dengan energi yang diskrit. Kuantum energi tidak dapat digambarkan sebagai gelombang tetapi lebih mendekati bentuk partikel. Partikel cahaya dalam bentuk kuantum dikenal dengan sebutan foton. Pandangan cahaya sebagai foton diperkuat lagi melalui gejala yang dikenal sebagai efek Compton.
Sinar-X digambarkan sebagai foton yang bertumbukan dengan elektron (seperti halnya dua bola bilyar yang bertumbukan). Elektron bebas yang diam menyerap sebagian energi foton sehingga bergerak ke arah membentuk sudut terhadap arah foton mula-mula. Foton yang menumbuk elektron pun terhambur dengan sudut θ terhadap arah semula dan panjang gelombangnya menjadi lebih besar. Perubahan panjang gelombang foton setelah terhambur dinyatakan sebagai

Dimana m adalah massa diam elektron, c adalah kecepatan cahaya, dan h adalah konstanta Planck.


Arthur Holly Compton


Jika seberkas sinar-X ditembakkan ke sebuah elektron bebas yang diam, sinar-X akan mengalami perubahan panjang gelombang dimana panjang gelombang sinar-X menjadi lebih besar. Gejala ini dikenal sebagai efek Compton, sesuai dengan nama penemunya, yaitu Arthur Holly Compton.
Edit

Efek Fotolistrik

pola warna-warni di atas aspal basah yang dikenai bensin terjadi akibat interferensi cahaya

Efek Fotolistrik

             Ketika seberkas cahaya dikenakan pada logam, ada elektron yang keluar dari permukaan logam. Gejala ini disebut efek fotolistrik. Efek fotolistrik diamati melalui prosedur sebagai berikut. Dua buah pelat logam (lempengan logam tipis) yang terpisah ditempatkan di dalam tabung hampa udara. Di luar tabung kedua pelat ini dihubungkan satu sama lain dengan kawat. Mula-mula tidak ada arus yang mengalir karena kedua plat terpisah. Ketika cahaya yang sesuai dikenakan kepada salah satu pelat, arus listrik terdeteksi pada kawat. Ini terjadi akibat adanya elektron-elektron yang lepas dari satu pelat dan menuju ke pelat lain secara bersama-sama membentuk arus listrik.
Hasil pengamatan terhadap gejala efek fotolistrik memunculkan sejumlah fakta yang merupakan karakteristik dari efek fotolistrik. Karakteristik itu adalah sebagai berikut.
hanya cahaya yang sesuai (yang memiliki frekuensi yang lebih besar dari frekuensi tertentu saja) yang memungkinkan lepasnya elektron dari pelat logam atau menyebabkan terjadi efek fotolistrik (yang ditandai dengan terdeteksinya arus listrik pada kawat). Frekuensi tertentu dari cahaya dimana elektron terlepas dari permukaan logam disebut frekuensi ambang logam. Frekuensi ini berbeda-beda untuk setiap logam dan merupakan karakteristik dari logam itu.
ketika cahaya yang digunakan dapat menghasilkan efek fotolistrik, penambahan intensitas cahaya dibarengi pula dengan pertambahan jumlah elektron yang terlepas dari pelat logam (yang ditandai dengan arus listrik yang bertambah besar). Tetapi, Efek fotolistrik tidak terjadi untuk cahaya dengan frekuensi yang lebih kecil dari frekuensi ambang meskipun intensitas cahaya diperbesar.
ketika terjadi efek fotolistrik, arus listrik terdeteksi pada rangkaian kawat segera setelah cahaya yang sesuai disinari pada pelat logam. Ini berarti hampir tidak ada selang waktu elektron terbebas dari permukaan logam setelah logam disinari cahaya.
Karakteristik dari efek fotolistrik di atas tidak dapat dijelaskan menggunakan teori gelombang cahaya. Diperlukan cara pandang baru dalam mendeskripsikan cahaya dimana cahaya tidak dipandang sebagai gelombang yang dapat memiliki energi yang kontinu melainkan cahaya sebagai partikel.

Perangkat teori yang menggambarkan cahaya bukan sebagai gelombang tersedia melalui konsep energi diskrit atau terkuantisasi yang dikembangkan oleh Planck dan terbukti sesuai untuk menjelaskan spektrum radiasi kalor benda hitam. Konsep energi yang terkuantisasi ini digunakan oleh Einstein untuk menjelaskan terjadinya efek fotolistrik. Di sini, cahaya dipandang sebagai kuantum energi yang hanya memiliki energi yang diskrit bukan kontinu yang dinyatakan sebagai E = hf.

Konsep penting yang dikemukakan Einstein sebagai latar belakang terjadinya efek fotolistrik adalah bahwa satu elektron menyerap satu kuantum energi. Satu kuantum energi yang diserap elektron digunakan untuk lepas dari logam dan untuk bergerak ke pelat logam yang lain. Hal ini dapat dituliskan sebagai

Energi cahaya = Energi ambang + Energi kinetik maksimum elektron

E = W0 + Ekm

hf = hf0 + Ekm

Ekm = hf – hf0
Persamaan ini disebut persamaan efek fotolistrik Einstein. Perlu diperhatikan bahwa W0 adalah energi ambang logam atau fungsi kerja logam, f0 adalah frekuensi ambang logam, f adalah frekuensi cahaya yang digunakan, dan Ekm adalah energi kinetik maksimum elektron yang lepas dari logam dan bergerak ke pelat logam yang lain. Dalam bentuk lain persamaan efek fotolistrik dapat ditulis sebagai
Dimana m adalah massa elektron dan ve adalah dan kecepatan elektron. Satuan energi dalam SI adalah joule (J) dan frekuensi adalah hertz (Hz). Tetapi, fungsi kerja logam biasanya dinyatakan dalam satuan elektron volt (eV) sehingga perlu diingat bahwa 1 eV = 1,6 × 10−19 J.


Potensial Penghenti

Gerakan elektron yang ditandai sebagai arus listrik pada gejala efek fotolistrik dapat dihentikan oleh suatu tegangan listrik yang dipasang pada rangkaian. Jika pada rangkaian efek fotolistrik dipasang sumber tegangan dengan polaritas terbalik (kutub positif sumber dihubungkan dengan pelat tempat keluarnya elektron dan kutub negatif sumber dihubungkan ke pelat yang lain), terdapat satu nilai tegangan yang dapat menyebabkan arus listrik pada rangkaian menjadi nol.

Arus nol atau tidak ada arus berarti tidak ada lagi elektron yang lepas dari permukaan logam akibat efek fotolistrik. Nilai tegangan yang menyebabkan elektron berhenti terlepas dari permukaan logam pada efek fotolistrik disebut tegangan atau potensial penghenti (stopping potential). Jika V0 adalah potensial penghenti, maka

Ekm = eV0
Persamaan ini pada dasarnya adalah persamaan energi. Perlu diperhatikan bahwa e adalah muatan elektron yang besarnya 1,6 × 10−19 C dan tegangan dinyatakan dalam satuan volt (V).

Aplikasi Efek fotolistrik

Efek fotolistrik merupakan prinsip dasar dari berbagai piranti fotonik (photonic device) seperti lampu LED (light emitting device) dan piranti detektor cahaya (photo detector).
Soal No. 1
Cermati gambar percobaan penyinaran suatu lempeng logam dengan cahaya berikut. Jika fungsi kerja logam adalah 2,2 eV dan cahaya yang disinarkan memiliki panjang gelombang λ dan frekuensi f tentukan:

a) energi cahaya minimal yang diperlukan agar elektron lepas dari logam
b) frekuensi cahaya minimal yang diperlukan agar elektron lepas dari logam
c) panjang gelombang maksimum yang diperbolehkan agar elektron lepas dari logam
Gunakan data berikut :
Cepat rambat cahaya c = 3 x 108 m/s
Tetapan Planck h = 6,6 x 10−34 Js
1 eV = 1,6 x 10−19 joule
Pembahasan
a) energi cahaya minimal yang diperlukan agar elektron lepas dari logam
energi cahaya minimal tidak lain adalah energi ambang atau fungsi kerja logam. Sehingga
Wo = 2,2 eV
Wo = 2,2 x (1,6 x 10−19 ) joule = 3,52 x 10−19 joule

b) frekuensi cahaya minimal yang diperlukan agar elektron lepas dari logam
Ingat energi foton atau cahaya adalah E = hf, E disini dilambangkan sebagai Wo sehingga
Wo = h fo
3,52 x 10−19 = 6,6 x 10−34 x fo
fo = 0,53 x 1015 joule

c) panjang gelombang maksimum yang diperbolehkan agar elektron lepas dari logam
Hubungkan dengan kecepatan cahaya
λmax = c / fo
λmax = 3 x 108 / 0,53 x 1015
λmax = 5,67 x 10−7 m

Soal No. 2
Cermati gambar percobaan penyinaran suatu lempeng logam dengan cahaya berikut:

Jika fungsi kerja logam adalah 2,1 eV dan cahaya yang disinarkan memiliki panjang gelombang 2500 Ã… dengan konstanta Planck 6,6 x 10−34 Js dan 1 eV = 1,6 x 10−19 joule, tentukan
a) energi ambang logam dalam satuan joule
b) frekuensi ambang
c) panjang gelombang maksimum yang diperlukan untuk melepas elektron dari logam
d) panjang gelombang dari cahaya yang disinarkan dalam meter
e) frekuensi dari cahaya yang disinarkan dalam Hz
f) energi foton cahaya yang disinarkan
g) energi kinetik dari elektron yang lepas dari logam

Pembahasan
Skemanya seperti ini

Logam yang di dalamnya terdapat elektron-elektron disinari oleh cahaya yang memiliki energi E. Jika energi cahaya ini cukup besar, maka energi ini akan dapat melepaskan elektron dari logam, dengan syarat, energi cahayanya lebih besar dari energi ambang bahan. Elektron yang lepas dari logam atau istilahnya fotoelektron akan bergerak dan memiliki energi kinetik sebesar Ek

Hubungan energi cahaya yang disinarkan E, energi ambang bahan Wo dan energi kinetik fotoelektron Ek adalah
E = Wo + Ek
atau
hf = hfo + Ek

a) energi ambang logam dalam satuan joule
Wo = 2,1 x (1,6 x 10−19 ) joule = 3,36 x 10−19 joule

b) frekuensi ambang
Wo = h fo
3,36 x 10−19 = 6,6 x 10−34 x fo
fo = 0,51 x 1015

c) panjang gelombang maksimum yang diperlukan untuk melepas elektron dari logam
λmax = c / fo
λmax = 3 x 108 / 0,51 x 1015
λmax = 5,88 x 10−7 m d) panjang gelombang dari cahaya yang disinarkan dalam meter
λ = 2500 Ã… = 2500 x 10−10 m = 2,5 x 10−7 m

e) frekuensi dari cahaya yang disinarkan dalam Hz
f = c/λ
f = 3 x 10 8/2,5 x 10−7
f = 1,2 x 10 15 Hz

f) energi cahaya yang disinarkan
E = hf
E = (6,6 x 10−34) x 1,2 x 10 15 = 7,92 x 10 −19 joule

g) energi kinetik dari elektron yang lepas dari logam
E = Wo + Ek 7,92 x 10 −19 = 3,36 x 10−19 + Ek
Ek = 7,92 x 10 −19 − 3,36 x 10−19 = 4,56 x 10−19 joule

Soal No. 3
Sebuah keping logam yang mempunyai energi ambang 2 ev disinari dengan cahaya monokromatis dengan panjang gelombang 6000 Ã… hingga elektron meninggalkan permukaan logam. Jika h = 6,6 × 10−34 Js dan kecepatan cahaya 3 × 108 m/detik, maka energi kinetik elektron yang lepas....
A. 0,1 × 10–19 joule
B. 0,16 × 10–19 joule
C. 1,6 × 10–19 joule
D. 3,2 × 10–19 joule
E. 19,8 × 10–19 joule
Sumber soal : Ebtanas tahun 1986


Pembahasan
Data dari soal:
Energi ambang Wo = 2 eV = 2 x (1,6 x 10−19 ) = 3,2 x 10−19joule
Panjang gelombang λ = 6000 Ã… = 6000 x 10−10 = 6 x 10−7 m
Soal No. 4
Permukaan katode disinari cahaya sampai pada frekuensi tertentu, ternyata tidak terjadi foto elektron. Agar permukaan katode memancarkan foto elektron, usaha yang dapat dilaksanakan adalah …
A. mengurangi tebal katode dan memperbesar intensitas cahaya
B. memperbesar panjang gelombang dan memperbesar intensitasnya
C. mengurangi tebal katode dan memperbesar panjang gelombang
D. memperbesar frekuensi cahaya sampai frekuensi batas dan memperbesar intensitasnya
E. memperbesar frekuensi cahaya sampai di atas frekuensi batas dan memperbesar intensitasnya
Sumber soal : Ebtanas 1987

Pembahasan
Foto elektron tidak terjadi berarti energi cahaya yang disinarkan masih dibawah energi ambang, untuk itu frekuensi cahaya harus diperbesar hingga menghasilkan energi yang melebihi energi ambang. Untuk memperbanyak jumlah foto elektron yang terjadi, maka intensitas cahaya harus dinaikkan.

Soal No. 5
Hubungan energi kinetik elektron dan frekuensi penyinaran pada gejala foto listrik terlihat pada grafik di bawah ini.

Apabila konstanta Planck h, besarnya fungsi kerja logam adalah …
A. 1 h
B. 2 h
C. 3 h
D. 4 h
E. 8 h
Sumber soal : Ebtanas 1989

Pembahasan
Dari gambar terlihat frekuensi ambang adalah 4 HZ, sehingga nilai fungsi kerja logam

Wo = hfo = h(4) = 4h

Rabu, 21 Oktober 2015

Edit

Sistem Komputer

File ini berbentuk Pdf akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Perkembangan Komputer

File ini berbentuk Pdf akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Teknologi dan Informasi

File ini berbentuk Pdf akan terbuka secara otomatis dengan mengkliknya di sini
Edit

Presentasi Desain Via CorelDraw

TIK


MOCH FEBRIANSYAH
XI IPA 5

LATAR BELAKANG

Sketsa gambar mug yang saya buat terinspirasi dari sebuah gambar kartun yang pernah saya lihat di suatu acara tv yang menceritakan seorang pilot yang terbang. Tetapi, saya ubah situasinya menjadi diluar angkasa.


tujuan


¢Memenuhi tugas TIK
¢Berkreasi dengan corel draw


LANGKAH-LANGKAH


1.Membuat pesawat dengan menggunakan BEZIER yang dilengkungkan dengan menggunakan SHAPE  TOOL.


2. Membuat kepala menggunakan BEZIER yang dilengkungkan dengan SHAPE TOOL dan helm dengan PIE(135 derajat)


3. Lalu kepala dan pesawat digabungkan

  4. Membuat bumi dan bulan menggunakan lingkaran 180 derajat
5. Untuk membuat pulau-pulaunya menggunakan BEZIER yang kemudian di bentuk menyerupai pulau


6. Kemudian membuat bintang dengan STAR SHAPE lalu diduplikasi
7. Untuk latarnya buat persegi panjang dengan BASIC SHAPES lalu diberi warna hitam


Hasil setelah diberi warna


shape tool